Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(7): e29215, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38623200

RESUMEN

Renal cell carcinoma (RCC) is a frequent urological malignancy characterized by a high rate of metastasis and lethality. The treatment strategy for advanced RCC has moved through multiple iterations over the past three decades. Initially, cytokine treatment was the only systemic treatment option for patients with RCC. With the development of medicine, antiangiogenic agents targeting vascular endothelial growth factor and mammalian target of rapamycin and immunotherapy, immune checkpoint inhibitors (ICIs) have emerged and received several achievements in the therapeutics of advanced RCC. However, ICIs have still not brought completely satisfactory results due to drug resistance and undesirable side effects. For the past years, the interests form researchers have been attracted by the combination of ICIs and targeted therapy for advanced RCC and the angiogenesis and immunogenic tumor microenvironmental variations in RCC. Therefore, we emphasize the potential principle and the clinical progress of ICIs combined with targeted treatment of advanced RCC, and summarize the future direction.

2.
Front Oncol ; 12: 921711, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814377

RESUMEN

Background: mRNA vaccines are a novel technology that provide a potential strategy for cancer treatment. However, few studies exist that are focused on the application and development of mRNA vaccines in bladder cancer (BLCA). Therefore, this study filtered candidate antigens and specific mRNA-suitable populations in BLCA via comprehensive multi-omics analysis. Methods: Clinical information, follow-up information, and gene expression profiles were obtained from the TCGA and GEO databases. Somatic mutation and DNA copy number variation of BLCA were visualized by cBioPortal. Significant survival genes were analyzed by GEPIA2. TIMER was used to evaluate the connection between candidate antigens and infiltration of antigen-presenting cells. Consensus clustering analysis was performed to identify immune subtypes using the ConsensusClusterPlus package. The Monocle package was used to visualize the immune landscapes of each BLCA patient. Weighted gene co-expression network analysis (WGCNA) was used to identify key genes for mRNA vaccines. Results: AP2S1, P3H4, and RAC3 were identified as candidate tumor-specific antigens for BLCA. Three immune subtypes were classified based on immune-related gene expression profiles. Patients with the BCS2 subtype were characterized as immune "cold" and exhibited upregulation of immunogenic cell death modulators, whereas patients with BCS1 and BCS3 were immune "hot" and had upregulation of immune checkpoints. Interestingly, patients with the BCS2 subtype had a better prognosis than other subtypes. The immune landscapes of each patient were visualized and revealed the heterogeneity within the BCS1 subtype. Finally, 13 key immune genes were identified. Conclusions: AP2S1, P3H4, and RAC3 were identified as candidate tumor-specific antigens, and patients with the BCS2 and BCS1A subtypes were identified as candidate populations for mRNA vaccines. In summary, this study provides novel insights and a theoretical basis for mRNA vaccine development in BLCA and other malignancies.

3.
Front Genet ; 13: 886983, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547260

RESUMEN

Background: Messenger ribonucleic acid (mRNA) vaccine has been considered as a potential therapeutic strategy and the next research hotspot, but their efficacy against prostate adenocarcinoma (PRAD) remains undefined. This study aimed to find potential antigens of PRAD for mRNA vaccine development and identify suitable patients for vaccination through immunophenotyping. Methods: Gene expression profiles and clinical information were obtained from TCGA and ICGC. GEPIA2 was used to calculate the prognostic index of the selected antigens. The genetic alterations were compared on cBioPortal and the correlation between potential antigen and immune infiltrating cells was explored by TIMER. ConsensusClusterPlus was used to construct a consistency matrix, and identify the immune subtypes. Graph learning-based dimensional reduction was performed to depict immune landscape. Boruta algorithm and LASSO logistic analysis were used to screen PRAD patients who may benefit from mRNA vaccine. Results: Seven potential tumor antigens selected were significantly positively associated with poor prognosis and the antigen-presenting immune cells (APCs) in PRAD, including ADA, FYN, HDC, NFKBIZ, RASSF4, SLC6A3, and UPP1. Five immune subtypes of PRAD were identified by differential molecular, cellular, and clinical characteristics in both cohorts. C3 and C5 had immune "hot" and immunosuppressive phenotype, On the contrary, C1&C2 had immune "cold" phenotype. Finally, the immune landscape characterization showed the immune heterogeneity among patients with PRAD. Conclusions: ADA, FYN, HDC, NFKBIZ, RASSF4, SLC6A3, and UPP1 are potential antigens for mRNA vaccine development against PRAD, and patients in type C1 and C2 are suitable for vaccination.

4.
Cells ; 11(7)2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35406761

RESUMEN

Cataracts are a serious complication of diabetes. In long-term hyperglycemia, intracellular Ca2+ concentration ([Ca2+]i) and reactive oxygen species (ROS) are increased. The apoptosis of lens epithelial cells plays a key role in the development of cataract. We investigated a potential role for transient receptor potential vanilloid 2 (TRPV2) in the development of diabetic cataracts. Immunohistochemical and Western blotting analyses showed that TRPV2 expression levels were significantly increased in the lens epithelial cells of patients with diabetic cataracts as compared with senile cataract, as well as in both a human lens epithelial cell line (HLEpiC) and primary rat lens epithelial cells (RLEpiCs) cultured under high-glucose conditions. The [Ca2+]i increase evoked by a TRPV2 channel agonist was significantly enhanced in both HLEpiCs and RLEpiCs cultured in high-glucose media. This enhancement was blocked by the TRPV2 nonspecific inhibitor ruthenium red and by TRPV2-specific small interfering (si)RNA transfection. Culturing HLEpiCs or RLEpiCs for seven days in high glucose significantly increased apoptosis, which was inhibited by TRPV2-specific siRNA transfection. In addition, ROS inhibitor significantly suppressed the ROS-induced increase of TRPV2-mediated Ca2+ signal and apoptosis under high-glucose conditions. These findings suggest a mechanism underlying high-glucose-induced apoptosis of lens epithelial cells, and offer a potential target for developing new therapeutic options for diabetes-related cataracts.


Asunto(s)
Catarata , Complicaciones de la Diabetes , Diabetes Mellitus , Canales Catiónicos TRPV , Animales , Apoptosis , Catarata/genética , Complicaciones de la Diabetes/complicaciones , Diabetes Mellitus/metabolismo , Células Epiteliales/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Estrés Oxidativo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
5.
J Nanosci Nanotechnol ; 14(9): 7167-73, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25924386

RESUMEN

In this paper, a simple and efficient route had been developed for the synthesis of hierarchical α-Fe2O3 hollow microspheres with open pores on the shells. All chemicals used were low-cost compounds and environmentally benign. The as-prepared samples were characterized by field emission scanning electron microscope (FESEM), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) gas sorptometry. The results showed that the chelating ligand SSA and the initial pH value of the solution played important roles in the morphological control of the α-Fe2O3 nanostructures. A possible formation mechanism was described based on the experimental results. The obtained α-Fe2O3 hollow spheres exhibited an excellent adsorption capacity for Cr(VI) ions because of their high surface area and a good ability to preserve the accessible surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...